% !TeX root = ../Thesis.tex %************************************************ \chapter{Conclusions}\label{ch:conclusions} %************************************************ \glsresetall % Resets all acronyms to not used % build a framework for esim security analysis % LPA in python % Found bug in esim on sim cards % reverse engineered the estk.me update mechanism This thesis presented a systematic security analysis of commercial eSIM-on-SIM card implementations through the application of differential testing. Given the opaque and proprietary nature of most \gls{euicc} firmware, black-box testing approaches remain one of the few viable options for assessing correctness and security in deployed systems. With the design and implementation of a custom framework, this work introduces a reproducible method for identifying behavioral inconsistencies across vendor-specific \gls{esim} implementations. The developed framework integrates trace recording, scenario-driven testing, and property-based structured fuzzing, allowing the systematic mutation and replay of \gls{apdu} traces. The combination of syntactically valid \gls{asn1}-based input generation with deterministic mutation provides a strong fuzzing implementation. Through this approach, several notable implementation differences were identified, including a critical certificate validation bypass in one vendor’s \gls{euicc} side provisioning logic. These findings highlight the importance of independent verification and validation of \gls{esim} implementations. The observed deviations from \gls{gsma} specifications suggest that even well-established standards do not guarantee uniform security guarantees across vendors. Differential testing, as demonstrated, offers a scalable and automation-friendly approach to detect such inconsistencies without requiring access to proprietary source code.